
Lecture 9: Support Vector Machines
Applied Machine Learning
Volodymyr Kuleshov
Cornell Tech



Part 1: Classification Margins
In this lecture, we are going to cover Support Vector Machines (SVMs), one the most
successful classification algorithms in machine learning.

We start the presentation of SVMs by defining the classification margin.



Review: Binary Classification
Consider a training dataset .

We distinguish between two types of supervised learning problems depnding on the
targets .

1. Regression: The target variable  is continuous: .
2. Binary Classification: The target variable  is discrete and takes on one of 

possible values.

In this lecture, we assume .

 = {( , ), ( , ), … , ( , )}!(1) "(1) !(2) "(2) !(#) "(#)

"($)

" ∈   ⊆ ℝ
" % = 2

 = {−1, +1}



Review: Linear Model Family
In this lecture, we will work with linear models of the form:

where  is a vector of features and  is the target. The  are the

parameters of the model.

We can represent the model in a vectorized form

(!)&' = + ⋅ + ⋅ +. . . + ⋅'0 '1 !1 '2 !2 '( !(
! ∈ ℝ( " ∈ {−1, 1} ')

(!) = ! + .&' '⊤ '0



Notation and The Iris Dataset
In this lecture, we are going to again use the Iris flower dataset.

As we just mentioned, we make two additional assumptions:

We will only consider binary classificaiton problems.
We will use  as the label space. = {−1, 1}



In [1]: import numpy as np
import pandas as pd
from sklearn import datasets

# Load the Iris dataset
iris = datasets.load_iris(as_frame=True)
iris_X, iris_y = iris.data, iris.target

# subsample to a third of the data points
iris_X = iris_X.loc[::4]
iris_y = iris_y.loc[::4]

# create a binary classification dataset with labels +/- 1
iris_y2 = iris_y.copy()
iris_y2[iris_y2==2] = 1
iris_y2[iris_y2==0] = -1

# print part of the dataset
pd.concat([iris_X, iris_y2], axis=1).head()

Out[1]: sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target

0 5.1 3.5 1.4 0.2 -1

4 5.0 3.6 1.4 0.2 -1

8 4.4 2.9 1.4 0.2 -1

12 4.8 3.0 1.4 0.1 -1

16 5.4 3.9 1.3 0.4 -1



In [2]: # https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.ht
ml
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = [12, 4]
import warnings
warnings.filterwarnings("ignore")

# create 2d version of dataset and subsample it
X = iris_X.to_numpy()[:,:2]
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))

# Plot also the training points
p1 = plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=60, cmap=plt.cm.Paired)
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.legend(handles=p1.legend_elements()[0], labels=['Setosa', 'Not Setosa'], loc
='lower right')

Out[2]: <matplotlib.legend.Legend at 0x12b01cd30>





Comparing Classification Algorithms
We have seen different types approaches to classification.

When fitting a model, there may be many valid decision boundaries. How do we select one
of them?



Consider the following three classification algorithms from sklearn . Each of them

outputs a different classification boundary.

In [3]: from sklearn.linear_model import LogisticRegression, Perceptron, RidgeClassifier
models = [LogisticRegression(), Perceptron(), RidgeClassifier()]

def fit_and_create_boundary(model):
    model.fit(X, iris_y2)
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return Z

plt.figure(figsize=(12,3))
for i, model in enumerate(models):
    plt.subplot('13%d' % (i+1))
    Z = fit_and_create_boundary(model)
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) 

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
    plt.title('Algorithm %d' % (i+1))
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')

plt.show()





Classification Scores
Most classification algorithms output not just a class label but a score.

For example, logistic regression returns the class probability

If the class probability is , the model outputs class .

The score is an estimate of confidence; it also represents how far we are from the decision
boundary.

*(" = 1| ∣ !) = +( !) ∈ [0, 1]'⊤

> 0.5 1



The Max-Margin Principle
Intuitively, we want to select boundaries with high margin.

This means that we are as confident as possible for every point and we are as far as
possible from the decision boundary.



Several of the separating boundaries in our previous example had low margin: they came
too close to the boundary.

In [4]: from sklearn.linear_model import Perceptron, RidgeClassifier
from sklearn.svm import SVC
models = [SVC(kernel='linear', C=10000), Perceptron(), RidgeClassifier()]

def fit_and_create_boundary(model):
    model.fit(X, iris_y2)
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
    return Z

plt.figure(figsize=(12,3))
for i, model in enumerate(models):
    plt.subplot('13%d' % (i+1))
    Z = fit_and_create_boundary(model)
    plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired) 

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=iris_y2, edgecolors='k', cmap=plt.cm.Paired)
    if i == 0:
        plt.title('Good Margin')
    else:
        plt.title('Bad Margin')
    plt.xlabel('Sepal length')
    plt.ylabel('Sepal width')

plt.show()





Below, we plot a decision boundary between the two classes (solid line) that has a high
margin. The two dashed lines that lie at the margin.

Points that are the margin are highlighted in black. A good decision boundary is as far away
as possible from the points at the margin.

In [5]: #https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.ht
ml
from sklearn import svm

# fit the model, don't regularize for illustration purposes
clf = svm.SVC(kernel='linear', C=1000) # we'll explain this algorithm shortly
clf.fit(X, iris_y2)

plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]).reshape(xx.shape)

# plot decision boundary and margins
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6])
plt.ylim([2.25, 4])

Out[5]: (2.25, 4.0)





The Functional Classification Margin
How can we define the concept of margin more formally?

We can try to define the margin  with respect to a training example  as

We call this the functional margin. Let's analyze it.

,(̃$) ( , )!($) "($)

= ⋅ &( ) = ⋅ ( + ) .,(̃$) "($) !($) "($) '⊤!($) '0



We defined the functional margin as

= ⋅ ( + ) .,(̃$) "($) '⊤!($) '0

If , then the margin  is large when the model score 
 is positive and large.

= 1"($) ,(̃$)

&( ) = +!($) '⊤!($) '0

Thus, we are classifying  correctly and with high confidence.!($)

If , then the margin  is large when the model score 
 is negative and large in absolute value.

= −1"($) ,(̃$)

&( ) = +!($) '⊤!($) '0

We are again classifying  correctly and with high confidence.!($)

Thus higher margin means higher confidence at each input point.



However, we have a problem.

If we rescale the parameters  by a scalar , we get new parameters 

The  doesn't change the classification of points.
However, the margin  is now scaled by !

It doesn't make sense that the same classification boundary can have different margins
when we rescale it.

', '0 - > 0
-', -'0

-', -'0
(- + - ) = - ( + )'⊤!($) '0 '⊤!($) '0 -



The Geometric Classification Margin
We define the geometric margin  with respect to a training example  as

We normalize the functional margin by 
Rescaling the weights can no longer make the margin arbitrarily large, which
addresses our previous issue.

, ($) ( , )!($) "($)

= ( ) ., ($) "($) +'⊤!($) '0
||'||

||'||



Let's again make sure our intuition about the margin holds.

= ( ) ., ($) "($) +'⊤!($) '0
||'||

If , then the margin  is large when the model score 
 is positive and large.

= 1"($) , ($)

&( ) = +!($) '⊤!($) '0

Thus, we are classifying  correctly and with high confidence.!($)

The same holds when . We again capture our intuition that increasing
margin means increasing the confidence of each input point.

= −1"($)



Geometric Intuitions
The margin  is called geometric because it corresponds to the distance from  to the
separating hyperplane  (dashed line below).

, ($) !($)

! + = 0'⊤ '0



Suppose that  (  lies on positive side of boundary). Then:

1. The points  that lie on the deicision boundary are those for which 
(score is precisely zero, and between 1 and -1).

= 1"($) !($)

! ! + = 0'⊤ '0

1. The vector  is perpedicular to the hyperplane  and has unit norm (fact

from calculus).

'
||'|| ! +'⊤ '0



1. Let  be the point on the boundary closest to . Then by definition of the margin 

 or

!0 !($)

= +!($) !0 , ($) '
||'||

= − .!0 !($) , ($) '
||'||



1. Since  is on the hyperplane, , or!0 + = 0'⊤!0 '0

( − ) + = 0.'⊤ !($) , ($) '
||'||

'0

1. Solving for  and using the fact that , we obtain

Which is our geometric margin. The case of  can also be proven in a similar way.

, ($) ' = ||'|'⊤ |2

= ., ($) +'⊤!($) '0
||'||

= −1"($)



We can use our formula for  to precisely plot the margins on our earlier plot.,

In [6]: # plot decision boundary and margins
plt.figure(figsize=(5,5))
plt.scatter(X[:, 0], X[:, 1], c=iris_y2, s=30, cmap=plt.cm.Paired)
plt.contour(xx, yy, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.xlim([4.6, 6.1])
plt.ylim([2.25, 4])

# plot margin vectors
theta = clf.coef_[0]
theta0 = clf.intercept_
for idx in clf.support_[:3]:
    x0 = X[idx]
    y0 = iris_y2.iloc[idx]
    margin_x0 = (theta.dot(x0) + theta0)[0] / np.linalg.norm(theta)
    w = theta / np.linalg.norm(theta)
    plt.plot([x0[0], x0[0]-w[0]*margin_x0], [x0[1], x0[1]-w[1]*margin_x0], color
='blue')
    plt.scatter([x0[0]-w[0]*margin_x0], [x0[1]-w[1]*margin_x0], color='blue')
plt.show()





Part 2: The Max-Margin Classifier
We have seen a way to measure the confidence level of a classifier at a data point using the
notion of a margin.

Next, we are going to see how to maximize the margin of linear classifiers.



Review: Linear Model Family
In this lecture, we consider classification with linear models of the form:

where  is a vector of features and  is the target. The  are the

parameters of the model.

We can represent the model in a vectorized form

(!)&' = + ⋅ + ⋅ +. . . + ⋅'0 '1 !1 '2 !2 '( !(
! ∈ ℝ( " ∈ {−1, 1} ')

(!) = ! + .&' '⊤ '0



Review: Geometric Margin
We define the geometric margin  with respect to a training example  as

This also corresponds to the distance from  to the hyperplane.

, ($) ( , )!($) "($)

= ( ) ., ($) "($) +'⊤!($) '0
||'||

!($)



Maximizing the Margin
We want to define an objective that will result in maximizing the margin. As a first attempt,
consider the following optimization problem.

This is maximies the smallest margin over the . It guarantees each point has
margin at least .

,max
', ,,'0

subject to ≥ , for all $"($) ( ' +!($) )⊤ '0
||'||

( , )!($) "($)

,



Maximizing the Margin
This problem is difficult to optimize because of the division by  and we would like to
simplify it. First, consider the equivalent problem:

||'||

,max
', ,,'0

subject to (( ' + ) ≥ ,||'|| for all $"($) !($) )⊤ '0

Note that this problem has an extra degree of freedom:

Suppose we multiply  by some constant 
This yields another valid solution!

', '0 . > 0



To enforce uniqueness, we add another constraint that doesn't change the minimizer:

This ensures we cannot rescale  and also asks our linear model to assign each  a score
of at least :

||'|| = .1
,

' !($)

±1
(( ' + ) ≥ 1 for all $"($) !($) )⊤ '0



Maximizing the Margin
If we constraint  holds, then we know that  and we can replace  in the

optimization problem to obtain:

The solution of this problem is still the same.

||'|| = 1
, , = 1/' ,

max
','0

1
||'||

subject to (( ' + ) ≥ 1 for all $"($) !($) )⊤ '0



Maximizing the Margin: Final Version
Finally, instead of maximizing , we can minimize , or equvalently we can minimize 

.

This is now a quadratic program that can be solved using off-the-shelf optimization
algorithms!

1/' '
||'|1

2 |2

||'|min
','0

1
2 |2

subject to (( ' + ) ≥ 1 for all $"($) !($) )⊤ '0



Algorithm: Linear Support Vector Machine
Classification

Type: Supervised learning (binary classification)
Model family: Linear decision boundaries.
Objective function: Max-margin optimization.
Optimizer: Quadratic optimization algorithms.
Probabilistic interpretation: No simple interpretation!

Later, we will see several other versions of this algorithm.



Part 3: Soft Margins and the Hinge Loss
Let's continue looking at how we can maximize the margin.



Review: Maximizing the Margin
We saw that maximizing the margin amounts to solving the following optimization
problem.

This is now a quadratic program that can be solved using off-the-shelf optimization
algorithms.

||'|min
','0

1
2 |2

subject to (( ' + ) ≥ 1 for all $"($) !($) )⊤ '0



Non-Separable Problems
So far, we have assume that a linear hyperplane exists. However, what if the classes are
non-separable? Then our optimization problem does not have a solution and we need to
modify it.



Our solution is going to be to make each constraint "soft", by introducing "slack" variables,
which allow the constraint to be violated.

If we can classify each point with a perfect score of , the .
If we cannot assign a perfect score, we assign a score of .
We define optimization such that the  are chosen to be as small as possible.

(( ' + ) ≥ 1 − ."($) !($) )⊤ '0 /$

≥ 1 = 0/$
1 − /$

/$



In the optimization problem, we assign a penalty  to these slack variables to obtain:0

min
', ,/'0

subject to 

||'| + 01
2 |2 ∑

$=1

#
/$

(( ' + ) ≥ 1 − for all $"($) !($) )⊤ '0 /$

≥ 0/$



Towards an Unconstainted Objective
Let's further modify things. Moving around terms in the inequality we get:

min
', ,/'0

subject to 

||'| + 01
2 |2 ∑

$=1

#
/$

≥ 1 − (( ' + ) ≥ 0 for all $/$ "($) !($) )⊤ '0 /$

If , we classified  perfectly and 0 ≥ 1 − (( ' + )"($) !($) )⊤ '0 !($) = 0/$

If , then 0 < 1 − (( ' + )"($) !($) )⊤ '0 = 1 − (( ' + )/$ "($) !($) )⊤ '0

Thus, .= max (1 − (( ' + ) , 0)/$ "($) !($) )⊤ '0



We simplify notation a bit by using the notation .

This yields:

(! = max(!, 0))+

= max (1 − (( ' + ) , 0) :=/$ "($) !($) )⊤ '0 (1 − (( ' + ))"($) !($) )⊤ '0
+



Towards an Unconstainted Objective
Since , we can take=/$ (1 − (( ' + ))"($) !($) )⊤ '0

+

min
', ,/'0

subject to 

||'| + 01
2 |2 ∑

$=1

#
/$

≥ 1 − (( ' + ) ≥ 0 for all $/$ "($) !($) )⊤ '0 /$

And we turn it into the following by plugging in the definition of :/$

||'| + 0min
','0

1
2 |2 ∑

$=1

#

(1 − (( ' + ))"($) !($) )⊤ '0
+



Since it doesn't matter which term we multiply by , this is equivalent to

for some .

0 > 0
+ ||'|min

', ,/'0 ∑
$=1

#

(1 − (( ' + ))"($) !($) )⊤ '0
+ 1

2 |2

1 > 0



An Unconstrained Objective
We have now turned our optimizatin problem into an unconstrained form:

The hinge loss penalizes incorrect predictions.
The L2 regularizer ensures the weights are small and well-behaved.

+min
','0 ∑

$=1

#

(1 − (( ' + ))"($) !($) )⊤ '0
+

  
hinge loss

||'|
1
2 |2

⏟regularizer



The Hinge Loss
Consider again our new loss term for a label  and a prediction :" &

2(", &) = max (1 − " ⋅ &, 0) .

If prediction  has same class as , and , the loss is zero.
If class correct, no penalty if score  is larger than target .

& " |&| ≥ 1
& "

If the prediction  is of the wrong class, or , loss is .& |&| ≤ 1 |" − &|

Let's visualize a few losses , as a function of , including hinge.2(" = 1, &) &



In [7]: # define the losses for a target of y=1
hinge_loss = lambda f: np.maximum(1 - f, 0)
l2_loss = lambda f: (1-f)**2
l1_loss = lambda f: np.abs(f-1)

# plot them
fs = np.linspace(0, 2)
plt.plot(fs, l1_loss(fs), fs, l2_loss(fs), fs, hinge_loss(fs), linewidth=9, alph
a=0.5)
plt.legend(['L1 Loss', 'L2 Loss', 'Hinge Loss'])
plt.xlabel('Prediction f')
plt.ylabel('L(y=1,f)')

Out[7]: Text(0, 0.5, 'L(y=1,f)')



The hinge loss is linear like the L1 loss.
But it only penalizes errors that are on the "wrong" side:

We have an error of  if true class is  and 
We don't penalize for predicting  if true class is .

|& − "| 1 & < 1
& > 1 1

In [8]: plt.plot(fs, hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])

Out[8]: <matplotlib.legend.Legend at 0x12e750a58>



Properties of the Hinge Loss
The hinge loss is one of the best losses in machine learning!

It penalizes errors "that matter", hence is less sensitive to outliers.
Minimizing a regularized hinge loss optimizes for a high margin.
The loss is non-differentiable at point, which may make it more challenging to
optimize.



Part 4: Optimization for SVMs
We have seen a new way to formulate the SVM objective. Let's now see how to optimize it.



Review: Linear Model Family
In this lecture, we consider classification with linear models of the form:

where  is a vector of features and  is the target. The  are the

parameters of the model.

We can represent the model in a vectorized form

(!)&' = + ⋅ + ⋅ +. . . + ⋅'0 '1 !1 '2 !2 '( !(
! ∈ ℝ( " ∈ {−1, 1} ')

(!) = ! + .&' '⊤ '0



Review: The Hinge Loss
The hinge loss for a label  and a prediction  is:

The hinge loss is linear like the L1 loss.
But it only penalizes errors that are on the side of the wrong class.

" &
2(", &) = max (1 − " ⋅ &, 0) .

In [9]: plt.plot(hinge_loss(fs), linewidth=9, alpha=0.5)
plt.legend(['Hinge Loss'])

Out[9]: <matplotlib.legend.Legend at 0x12e931550>



Review: SVM Objective
Maximizing the margin can be done in the following form:

The hinge loss penalizes incorrect predictions.
The L2 regularizer ensures the weights are small and well-behaved.

+min
', ,/'0 ∑

$=1

#

(1 − (( ' + ))"($) !($) )⊤ '0
+

  
hinge loss

||'|
1
2 |2

⏟regularizer



We can easily implement this objective in numpy .

First we define the model.

In [10]: def f(X, theta):
    """The linear model we are trying to fit.
    
    Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional data matrix
    
    Returns:
    y_pred (np.array): n-dimensional vector of predicted targets
    """
    return X.dot(theta)



And then we define the objective.

In [11]: def svm_objective(theta, X, y, C=.1):
    """The cost function, J, describing the goodness of fit.
    
    Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional design matrix
    y (np.array): n-dimensional vector of targets
    """
    return (np.maximum(1 - y * f(X, theta), 0) + C * 0.5 * np.linalg.norm(theta[
:-1])**2).mean()



Review: Gradient Descent
If we want to optimize , we start with an initial guess  for the parameters and
repeat the following update:

As code, this method may look as follows:

3(') '0

:= − - ⋅ 3( ).'$ '$−1 ∇' '$−1

theta, theta_prev = random_initialization()
while norm(theta - theta_prev) > convergence_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * gradient(theta_prev)



A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear ?&

3(') = max (1 − " ⋅ (!), 0) = max (1 − " ⋅ !, 0) .&' '⊤

Here, you see the linear part of  that behaves like  (when ) in
orange:

3 1 − " ⋅ (!)&' " ⋅ (!) < 1&'



In [12]: plt.plot(fs, hinge_loss(fs),fs[:25], hinge_loss(fs[:25]), linewidth=9, alpha=0.5
)
plt.legend(['Hinge Loss', 'Hinge Loss when $y \cdot f < 1$'])

Out[12]: <matplotlib.legend.Legend at 0x12ea6f940>



When , we are in the "line" part and  behaves a like 

Our objective is

Hence the gradient in this regime is:

where we used .

" ⋅ (!) < 1&' 3(') 1 − " ⋅ (!)&'

3(') = max (1 − " ⋅ (!), 0) = max (1 − " ⋅ !, 0) .&' '⊤

3(') = −" ⋅ ∇ (!) = −" ⋅ !∇' &'
! = !∇''⊤



A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear ?

When , we are in the "flat" part and 
Hence the gradient is also just zero!

&
3(') = max (1 − " ⋅ (!), 0) = max (1 − " ⋅ !, 0) .&' '⊤

" ⋅ (!) < 1&' 3(') = 0



A Gradient for the Hinge Loss?
What is the gradient for the hinge loss with a linear ?

When , we are in the "kink", and the gradient is not defined!

In practice, we can either take the gradient when  or the gradient
when  or anything in between. This is called the subgradient.

&
3(') = max (1 − " ⋅ (!), 0) = max (1 − " ⋅ !, 0) .&' '⊤

" ⋅ (!) = 1&'

" ⋅ (!) > 1&'
" ⋅ (!) < 1&'



A Steepest Descent Direction for the Hinge Loss
We can define a "gradient" like function  for the hinge loss

It equals:

3(')∇̃'
3(') = max (1 − " ⋅ (!), 0) = max (1 − " ⋅ !, 0) .&' '⊤

3(') = {∇̃'
−" ⋅ !
0

 if " ⋅ (!) > 1&'
 otherwise



Subgradient Descent for SVM
Putting this together, we obtain a complete learning algorithm, based on an optimization
procedure called subgradient descent.

Let's implement this algorithm.

theta, theta_prev = random_initialization()
while abs(J(theta) - J(theta_prev)) > conv_threshold:
    theta_prev = theta
    theta = theta_prev - step_size * approximate_gradient

First we implement the approximate gradient.



In [13]: def svm_gradient(theta, X, y, C=.1):
    """The (approximate) gradient of the cost function.
    
    Parameters:
    theta (np.array): d-dimensional vector of parameters
    X (np.array): (n,d)-dimensional design matrix
    y (np.array): n-dimensional vector of targets
    
    Returns:
    subgradient (np.array): d-dimensional subgradient
    """
    yy = y.copy()
    yy[y*f(X,theta)>=1] = 0
    subgradient = np.mean(-yy * X.T, axis=1)
    subgradient[:-1] += C * theta[:-1]
    return subgradient

And then we implement subgradient descent.

In [14]: threshold = 5e-4
step_size = 1e-2

theta, theta_prev = np.ones((3,)), np.zeros((3,))
iter = 0
iris_X['one'] = 1
X_train = iris_X.iloc[:,[0,1,-1]].to_numpy()



y_train = iris_y2.to_numpy()

while np.linalg.norm(theta - theta_prev) > threshold:
    if iter % 1000 == 0:
        print('Iteration %d. J: %.6f' % (iter, svm_objective(theta, X_train, y_t
rain)))
    theta_prev = theta
    gradient = svm_gradient(theta, X_train, y_train)
    theta = theta_prev - step_size * gradient
    iter += 1

Iteration 0. J: 3.728947
Iteration 1000. J: 0.376952
Iteration 2000. J: 0.359075
Iteration 3000. J: 0.351587
Iteration 4000. J: 0.344411
Iteration 5000. J: 0.337912
Iteration 6000. J: 0.331617
Iteration 7000. J: 0.326604
Iteration 8000. J: 0.322224
Iteration 9000. J: 0.319250
Iteration 10000. J: 0.316727
Iteration 11000. J: 0.314800
Iteration 12000. J: 0.313181
Iteration 13000. J: 0.311843
Iteration 14000. J: 0.310667
Iteration 15000. J: 0.309561
Iteration 16000. J: 0.308496
Iteration 17000. J: 0.307523
Iteration 18000. J: 0.306614
Iteration 19000. J: 0.305768
Iteration 20000. J: 0.305068
Iteration 21000. J: 0.304293



We can visualize the results to convince ourselves we found a good boundary.



In [15]: xx, yy = np.meshgrid(np.arange(x_min, x_max, .02), np.arange(y_min, y_max, .02))
Z = f(np.c_[xx.ravel(), yy.ravel(), np.ones(xx.ravel().shape)], theta)
Z[Z<0] = 0
Z[Z>0] = 1

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', cmap=plt.cm
.Paired)
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')

plt.show()





Algorithm: Linear Support Vector Machine
Classification

Type: Supervised learning (binary classification)
Model family: Linear decision boundaries.
Objective function: L2-regularized hinge loss.
Optimizer: Subgradient descent.
Probabilistic interpretation: No simple interpretation!


